The Henderson Mine Ventilation System

The American Institute of Mining, Metallurgical, and Petroleum Engineers
Jeff Steinhoff
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
176 KB
Publication Date:
Jan 1, 1981

Abstract

INTRODUCTION The Henderson mine utilizes a highly mechanized, continuous, panel-caving, mining system to extract ore from a deep, massive, molybdenite deposit. The mine is located 80.5 km (50 miles) west of Denver, Colorado. The mine surface facilities are located 3,170 m (10,400 feet) above sea level in a steep valley on the eastern side of the Continental Divide. Milling facilities are 24 km (15 miles) west on the western side of the divide at an elevation of 2,804 m (9,200 feet) above sea level. The ore- body is located approximately 3,000 feet south of the valley under Red Mountain. Access to the ore for men and materials is through a 915 m (3,000-foot) deep, 8.5 m (28-foot) diameter, vertical, concrete-lined, service shaft. Access from the mill is through a 15.5 km (9.6-mile) rail haulage tunnel. The mine is ventilated through an additional intake shaft and two exhaust shafts. Mine production at this time is 27,255 mtpd (30,000 stpd). The mine ventilation system supplies 1,038 cubic meters per second (2.2 million cfm) through approximately 60 miles of drifting or 2.7 tons of air per ton of ore mined. There are 130 fans in the mine in fixed locations and in vent lines with 6,900 connected horsepower in the mine. MINING METHOD AND LAYOUT The orebody is divided vertically into two major zones. The upper zone is the 8100-level production area. The bottom zone is the 7700- level production area which is in the early development stage. The rail haulage level at 7500 feet is common to both production zones. Each mine production zone consists of five associated sublevels. The cave undercut level is 16.8 m (55 feet) above the production level. Two boundary cutoff levels are located 44.2 m (145 feet) and 62.5 m (205 feet) respectively above the production level. The fresh-air level is positioned 15.2 m (50 feet) below the production level, and the exhaust vent level is 19.8 m (65 feet) below the production level. Horizontally, each production zone is divided into three panels each, 224 m (800 feet) wide. These panels are caved from south to north. As the caving in one panel nears completion, caving in the adjacent panel is initiated. Development for the caving panels is continuous so that the sublevels above the production level and the production level itself have a combination of development drifting and production-related activities. UNDERGROUND VENTILATION NETWORK The ventilation system is zoned in the same manner as the orebody itself. One major split of 600 cubic meters per second (1,270,000 cfm) ventilates the 8100-level production zone; one split of 100 cubic meters per second (210,000 cfm) ventilates the development of the 7700- level production zone; and one split of 165 cubic meters per second (350,000 cfm) ventilates the 7500 rail haulage level. The haulage tunnel requires an additional 188 cubic meters per second (400,000 cfm) of air. Development-drift ventilation is accomplished by hanging 1.0 m (3.5-foot) diameter steel ducting in the drifts with 40-horsepower, 0.96 m (38-inch) diameter fans supplying 9.4 cubic meters per second (20.000 cfm). The normal maximum length for these systems is 300 m (1,000 feet). The 8100-level production-area ventilation system is especially suited to a high level of mucking activity confined in a small area. Approximately 93 per cent of the mine's total production is transferred from the drawpoints to ore passes in 10 production drifts. The active area in each drift is 300 m (1,000 feet). Twelve 5-cubic-yard LHD units with Cat turbo- charged 170-horsepower engines are assigned to the area. Under these conditions, more than one LHD is assigned to a particular production drift. Adequate ventilation is maintained by making an air change every 97 m (320 feet) along the production drifts. Fresh air is brought into the production drifts from the fresh-air level through 1.37 m (4.5-foot) diameter raises. Air travels south along the production drift to the ore pass where it is exhausted down the ore pass to the exhaust level. The ore pass is followed by another intake which is followed by an ore-pass exhaust. At the south end of the production area, a series of exhaust fans maintain a southerly air- flow through the production level.
Citation

APA: Jeff Steinhoff  (1981)  The Henderson Mine Ventilation System

MLA: Jeff Steinhoff The Henderson Mine Ventilation System. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1981.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account