Institute of Metals Division - Studies on the Metallurgy of Silicon Iron, IV Kinetics of Selective Oxidation

The American Institute of Mining, Metallurgical, and Petroleum Engineers
A. U. Seybolt
Organization:
The American Institute of Mining, Metallurgical, and Petroleum Engineers
Pages:
4
File Size:
1156 KB
Publication Date:
Jan 1, 1960

Abstract

In part 111' of this series it was shown that during the selective oxidation of a 3 1/4 pct Si-Fe alloy in damp hydrogen, only silica, (observed at room temperature) as low cristobalite or low tridy-mite or both, was formed as an oxidation product. In some in- „ stances where the film was fairly thin (probably well under 100A) there was some suggestion of an amorphous form of SiO2. The present investigation of oxidation rate showed that the selective oxidation of silicon-iron can be rather complicated, and apparently impossible to rationalize in an unequivocal manner. In some temperature regions, notably near 800" and 1000°C, the data seem to obey the familiar parabolic rate law. However, at intermediate temperatures complications were noted, some of which are possibly due to the order-disorder reaction in the silicon-iron solid solution. IN an earlier report' it was shown that during the oxidation of 3 1/4 pct Si-Fe alloys in H2O-H2 atmospheres only silica films were formed in the temperature range from 400° to 1000°C in hydrogen nearly saturated with water at room temperatures, or at dew points as low as -45°C. In the work to be reported here, some observations are made on the rate of oxide film formation. As in the earlier investigation, electron diffraction patterns generally showed either low tridymite or low cristobalite or both, except for some very thin films. These sometimes showed diffuse rings, presumably due to a very small crystallite size, or in a few cases, diffuse bands probably caused by an amorphous film. EXPERIMENTAL PROCEDURE Vacuum-melted silicon iron made of high-purity materials was rolled into strips 0.014 in. thick, and cut into samples 1/2 in. wide by 1 in. long. Chemical analysis showed 3.2 pct Si and 0.002 pct C. All samples were surface abraded with 600-grit paper, were solvent cleaned, and then placed in an paper,apparatus containing a "Gulbransen type"2 micro-balance. Here the gain in weight of the samples of about 5 sq cm area could be followed as a function of time during the oxidation caused by the water in atmospheres of various controlled water-hydrogen ratios. The water-hydrogen ratios can most easily be described as varying from a dew point of 0°C (PH2O-p^2 = 6.2 x 10-3 , to K (P j -40°C (PH2O/PH^= 1.3 X 10-* Most of the experiments were conducted at the 0°C dew-point atmosphere because drier atmospheres caused so little gain in weight that the accuracy of measurement was poor. Because of this, only the data obtained at PH2O,/P,,,= 6.2 x X3 will be reported. The temperature range extended from 800" to 1000°C; and most of the oxidation runs lasted for about 24 hr. The reproducibility of any reading was about ± 1 ?, but the sensitivity of the balance was about 0.2 ?. The atmosphere, flowing at 200 cm per-min, was preheated to the furnace temperature before contacting the specimen. While the gas flow caused a measurable lift on the sample, it was ordinarily sufficiently constant so that it was not an appreciable source of error. X-ray and electron diffraction checks of the samples before and after oxidation showed no evidence of preferred orientation, either on the metal samples or on the silica films formed. EXPERIMENTAL RESULTS The data obtained are summarized in Table I, and some are given in detail in Figs. 1 to 4. In the fourth column of Table I, kp refers to the parabolic rate constant in the expression (?/cm2)2 = kpt + c [1] where ? = micrograms gain in weight kp = parabolic rate constant in units r2 /cm4 t = time in minutes c = constant It will be noted that in many cases no value for kp is given; this is because in these instances the data did not obey the parabolic rate law. The silica film thicknesses given in the last columns are values calculated from the weight gain, an average tridy-mite-crystobalite density, and by assuming a perfectly plane surface. Fig. 1 shows the data plotted in the form of Eq. [I], hence a linear plot indicates parabolic behavior. It has been frequently observed in the literature that
Citation

APA: A. U. Seybolt  (1960)  Institute of Metals Division - Studies on the Metallurgy of Silicon Iron, IV Kinetics of Selective Oxidation

MLA: A. U. Seybolt Institute of Metals Division - Studies on the Metallurgy of Silicon Iron, IV Kinetics of Selective Oxidation. The American Institute of Mining, Metallurgical, and Petroleum Engineers, 1960.

Export
Purchase this Article for $25.00

Create a Guest account to purchase this file
- or -
Log in to your existing Guest account